翻訳と辞書
Words near each other
・ Mulungushi Dam
・ Mulungushi River
・ Mulungushi University
・ Mulungwishi
・ Mulur
・ Mulux
・ Mulvane
・ Multivariate
・ Multivariate adaptive regression splines
・ Multivariate analysis
・ Multivariate analysis of variance
・ Multivariate Behavioral Research
・ Multivariate Behrens–Fisher problem
・ Multivariate cryptography
・ Multivariate ENSO index
Multivariate gamma function
・ Multivariate interpolation
・ Multivariate kernel density estimation
・ Multivariate landing page optimization
・ Multivariate mutual information
・ Multivariate normal distribution
・ Multivariate optical computing
・ Multivariate optical element
・ Multivariate Pareto distribution
・ Multivariate probit model
・ Multivariate random variable
・ Multivariate stable distribution
・ Multivariate statistics
・ Multivariate t-distribution
・ Multivariate testing


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Multivariate gamma function : ウィキペディア英語版
Multivariate gamma function
In mathematics, the multivariate gamma function, Γ''p''(·), is a generalization of the gamma function. It is useful in multivariate statistics, appearing in the probability density function of the Wishart and inverse Wishart distributions.
It has two equivalent definitions. One is
:
\Gamma_p(a)=
\int_ \exp\left(
-(S)\right)
\left|S\right|^
dS ,

where S>0 means S is positive-definite. The other one, more useful in practice, is
:
\Gamma_p(a)=
\pi^\prod_^p
\Gamma\left(a+(1-j)/2\right ).

From this, we have the recursive relationships:
:
\Gamma_p(a) = \pi^ \Gamma(a) \Gamma_(a-\tfrac) = \pi^ \Gamma_(a) \Gamma() .

Thus
* \Gamma_1(a)=\Gamma(a)
* \Gamma_2(a)=\pi^\Gamma(a)\Gamma(a-1/2)
* \Gamma_3(a)=\pi^\Gamma(a)\Gamma(a-1/2)\Gamma(a-1)
and so on.
== Derivatives ==

We may define the multivariate digamma function as
:\psi_p(a) = \frac = \sum_^p \psi(a+(1-i)/2) ,
and the general polygamma function as
:\psi_p^(a) = \frac = \sum_^p \psi^(a+(1-i)/2).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Multivariate gamma function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.